
Gandeva Bayu Satrya, ST., MT.
Telematics Labz.

Informatics Department

Telkom University

@2014

Chapter 4

Interprocess Communication



Outline Today

Chapter 4 – Interprocess Communication

 API for IP

 Ext. Data Representation

 Multicast Communication

 Network Virtualization



 Chapter 3 discussed the Internet transport-level protocols UDP and
TCP without saying how middleware and application programs
could use these protocols.

 The next section of this chapter introduces

 the characteristics of interprocess communication and then
discusses UDP and TCP from a programmer’s point of view,

 presenting the Java interface to each of these two protocols,
together with a discussion of their failure models Figure 4.1
Middleware layers Applications,

 services Middleware layers Underlying interprocess
communication primitives: UDP and TCP.

Introduction



The general characteristics of interprocess communication and then
discuss the Internet protocols as an example, explaining how
programmers can use them, either by means of UDP messages or
through TCP streams.

a) The characteristics of interprocess communication

b) Sockets

c) UDP datagram communication

d) TCP stream communication

1. API for IP



Message passing between a pair of processes can be supported by
two message communication operations, send and receive, defined
in terms of destinations and messages.

 Synchronous and asynchronous: block and non-block.

 Message destinations : Internet address and local port.

 Reliability : validity and integrity

 Ordering : sender order

a. Characteristics of Inter.Comm.



 Both forms of communication (UDP and TCP) use the socket
abstraction, which provides an end point for communication
between processes.

 Java API for Internet addresses

InetAddress aComputer = InetAddress.getByName(“www.telkomuniversity.ac.id");

b. Sockets



a sending process to a receiving process without acknowledgement 
or retries

 Failure model for UDP datagrams : checksum error or because no 
buffer space

 Use of UDP : DNS and VoIP

 Java API for UDP datagrams : 

c. UDP Datagram Comm.



Ex : UDP client sends a message



Stream communication assumes that when a pair of processes are
establishing a connection, one of them plays the client role and the
other plays the server role, but thereafter they could be peers.

 Failure model : use checksums to detect and reject corrupt
packets and sequence numbers to detect and reject duplicate
packets.

 Use of TCP : HTTP, FTP, and SSH

 Java API for TCP streams

d. TCP Stream Comm.



Ex : TCP client makes a conn to Server



2. External Data Representation [PET]

Marshalling Unmarshalling



Ex : Presentation Formating [PET]

XDR

ASN.1 BER

NDR



Three alternative approaches to external data representation and
marshalling (Google’s Approaches) :

a) CORBA’s common data representation, which is concerned with
an external representation for the structured and primitive types

b) Java’s object serialization, which is concerned with the flattening
and external data representation of any single object or tree of
objects

c) XML (Extensible Markup Language), which defines a textual format
for representing structured data.

2. External Data Representation (con’t)



 CORBA’s Common Data Representation (CDR)

 These consist of 15 primitive types, which include short (16-bit), long
(32-bit), unsigned short, unsigned long, float (32-bit), double (64-bit),
char, boolean (TRUE, FALSE), octet (8-bit), and any (which can
represent any basic or constructed type)

 Marshalling in CORBA
struct Person {

string name;

string place;

unsigned long year;

};

a. CORBA



Contains the three fields of a struct whose respective types are

string, string and unsigned long

Ex: CORBA CDR Message



 In Java RMI, both objects and primitive data values may be passed
as arguments and results of method invocations.

 An object is an instance of a Java class

public class Person implements Serializable {

private String name;

private String place;

private int year;

public Person(String aName, String aPlace, int aYear) {

name = aName;

place = aPlace;

year = aYear;

}

// followed by methods for accessing the instance variables 

}

b. Java Object Serialization



Ex : Java Serialized Form

As an example, consider the serialization of the following object:

Person p = new Person("Smith", "London", 1984);



 XML is a markup language that was defined by the World Wide Web
Consortium (W3C) for general use on the Web.

 Both XML and HTML were derived from SGML (Standardized
Generalized Markup Language) [ISO 8879]

 XML data items are tagged with ‘markup’ strings.
<person id="123456789">

<name>Smith</name>

<place>London</place>

<year>1984</year>

<!-- a comment -->

</person >

c. Extensible Markup Language (XML)



 A multicast operation is more appropriate – this is an operation that
sends a single message from one process to each of the members
of a group of processes, usually in such a way that the membership
of the group is transparent to the sender.

 Multicast messages characteristics:

1) Fault tolerance based on replicated services: a group of
servers

2) Discovering services in spontaneous networking: to locate
available services

3) Better performance through replicated data: managing the
replicas

4) Propagation of event notifications: be used to notify processes

3. Multicast Communication



 IP multicast is built on top of
the Internet Protocol (IP).

 A multicast group is specified
by a Class D Internet address
(the range 224.0.0.0 to
239.255.255.255).

a. IP Multicast



 Some applications require a multicast protocol that is more reliable
than IP multicast.

 There is a need for reliable multicast, in which any message
transmitted is either received by all members of a group or by none
of them.

 The examples also suggest that some applications have strong
requirements for ordering, the strictest of which is called totally
ordered multicast.

b. Reliability and Ordering 



 Network virtualization is concerned with the construction of many
different virtual networks over an existing network such as the
Internet.

 Each virtual network can be designed to support a particular
distributed application.

 Each virtual network has its own particular addressing scheme,
protocols and routing algorithms, but redefined to meet the needs
of particular application classes.

4. Network Virtualization



Types of Overlay



Skype Overlay Architecture



[COU’12] Coulouris, G. Dollimore, J., Kindberg, T., Blair, G., DISTRIBUTED SYSTEMS :Concepts
and Design Fifth Edition, Pearson Education, Inc., United States of America, 2012.

[FOR’07] Forouzan, B.A., Data Communications and Networking, Fourth Edition, McGraw-
Hill, New York, 2007.

[TAN’07] Tanenbaum, A.S., Steen, M.V., DISTRIBUTED SYSTEMS : Principles and Paradigms
Second Edition, Pearson Education, Inc., United States of America, 2007.

[PET’12] Peterson, L.L., and Davie, B.S., Computer Networks: A Systems Approach Fifth
Edition, Morgan Kaufmann, Burlington USA, 2012.

References



Gandeva Bayu Satrya, ST., MT.
Telematics Labz.

Informatics Department

Telkom University

@2014

Thank You


