Chapter 4
Interprocess Communication

Gandeva Bayu Satrya, ST., MT.
Telematics Labz.
Informatics Department
Telkom University
@2014

Outline Today

Chapter 4 - Interprocess Communication

< APl for IP

< Ext. Data Representation
< Multicast Communication
“» Network Virtualization

Infroduction

= Chapter 3 discussed the Internet transport-level protocols UDP and
TCP without saying how middleware and application programs
could use these protocols.

= The next section of this chapter infroduces

v the characteristics of interprocess communication and then
discusses UDP and TCP from a programmer’s point of view,

v presenting the Java interface to each of these two protocols,
together with a discussion of their failure models Figure 4.1
Middleware layers Applications,

v’ services Middleware layers Underlying interprocess
communication primitives: UDP and TCP.

1. APl for IP

The general characteristics of inferprocess communication and then
discuss the Internet protocols as an example, explaining how
programmers can use them, either by means of UDP messages or
through TCP streames.

a) The characteristics of interprocess communication
) Sockefts

c) UDP datagram communication

d) TCP stream communication

a. Characteristics of Inter.Comm.

Message passing between a pair of processes can be suppor’red by
two message communication operations, send and receive, defined
in ferms of destinations and messages.

= Synchronous and asynchronous: block and non-block.
= Message destinations : Infernet address and local port.
= Reliabllity : validity and integrity

= Ordering : sender order

. Sockerts

D 4
agreed port
sncw anyport %9 p\(] socket
' D message W
client g server
D—> other ports ——(
Internet address = 138.37.94.248 Internet address = 138.37.88.249

= Both forms of communication (UDP and TCP) use the socket
abstraction, which provides an end point for communication

between processes.

= Java API for Internet addresses
InetAddress aComputer = InetAddress.getByName(“www.telkomuniversity.ac.id");

c. UDP Datagram Comm.

a sending process to a receiving process without acknowledgement
or retries

v Failure model for UDP datagrams : checksum error or because no
buffer space

v Use of UDP : DNS and VolP
v Java API for UDP datagrams :

Datagram packet

array of bytes containing message length of message Internet address port number

Ex : UDP client sends a message

import java.net. *;
import java.io. *;
public class UDPClientf
public static void main(String args[]){
K args give message contents and server hostmhame
DatagramSocket aSocket = null;
try {
aSocket = new DatagramSocket();
byte [] m = args[0].getBytes();
InetAddress aHost = InetAddress.getByName{args[1]);
int serverPort = 6789;
DatagramPacket request =
new DatagramPacket{m, m.length(), aHost, serverPort);
aSocket. send(request);
bvte[] buffer = new byte[1000];
DatagramPacket reply = new DatagramPacket(buffer, buffer.length);
aSocket.receive(reply);
Svstem.out.printin{ "Replyv: " + new String(replv.getData())):
| catch (SocketException e){ Svstem.out.println("Socket: " + e.getMessage());
[catch (1OException e){ Svstem.out.printin("10: " + e.getMessage());
! finally [iffaSocket = null) aSocket.close(); }

d. TCP Stream Comm.

Stream communication assumes that when a pair of processes are
establishing a connection, one of them plays the client role and the
other plays the server role, but thereafter they could be peers.

v Failure model : use checksums to detect and reject corrupt

packets and sequence numbers to detect and reject duplicate
packets.

v Use of TCP : HTTP, FTP, and SSH
v Java API for TCP streams

Ex : TCP client makes a conn to Server

import java.net.*;
import java.io.*;
public class TCPClient |
public static void main (String args[])
// arguments supply message and hostname of destination
Socket s = null;
tryf
int serverPort = 7896;
s = new Socket(args[1], serverPort);
DatalnputStream in = new DatalnputStream(s.getInputStream());
DataOutputStream out =
new DataOQOutputStream(s.getOutputStream());
out.writeUTF(args[0]); // UTF is a string encoding; see Sec 4.3
String data = in.readUTF();
Svystem.out.printin("Received: "+ data) ;
Jeatch (UnknownHostException e)f
System.out.printin("Sock: "+e.getMessage());
} catch (EOFException e){System.out.printin("EOF:"+e.getMessage());
] catch (IOException e){System.out.printin("10: "+e.getMessage());
} finally {if{s!=null) try {s.close(); Jcatch (IOException e){/*close failed*/}}

2. External

Marshalling

Application Application
data data
Presentation Presentation
encoding decoding
i
Message| Message| --- Message
(2) (17) (34) (126)
Big-endian | 00000010 | 00010001 | 00100010 | 01111110
(126) (34) (17) (2)
Little-endian | 01111110 | 00100010 | 00010001 | 00000010
Low High
address address

Data Representation [PET]

Unmarshalling

Ex : Presentation Formating [PET]

f«—— Count } Name |
XDR | | | | | | | | | | | |
3 7 J O H N S O N
| | | | | | | | | | | |
= List -
| | | | | | | | | | | |
3 497 8321 265
| | | | | | | | | | | |
ASN.1 BER type | length | type | length |«— value —| type | length «— value —
- value >
0 4 8 16 24 31
NDR IntegrRep | CharRep FloatRep Extension 1 Extension 2

2. External Data Representation (con’t)

Three alternative approaches to external data representation and
marshalling (Google’s Approaches) .

a) CORBA’'s common data representation, which is concerned with
an external representation for the structured and primitive types

0) Java’'s object serialization, which is concerned with the flattening
and external data representation of any single object or tree of
objects

c) XML (Extensible Markup Language), which defines a textual format
for representing structured data.

a. CORBA

= CORBA's Common Data Representation (CDR)

= These consist of 15 primifive types, which include short (16-bit), long
(32-bit), unsigned short, unsigned long, float (32-bit), double (64- bIT)
char, boolean (TRUE, FALSE), octet (8-bit), and any (which can
represent any basic or constructed type)

= Marshalling in CORBA
struct Person {
string name;
string place;
unsigned long year;

}s

Ex: CORBA CDR Message

index in notes

sequence of bytes < 4bytes = Onrepresentation
0-3] length of string
4-7 "Smit" ‘Smith’

811 "h "

12-15 6 length of string
1619 "Lond" ‘London’

20-23 "on_ "

24-27 1984 unsigned long

Contains the three fields of a struct whose respective types are
string, string and unsigned long

. Java Object Serialization

= In Java RMI, both objects and primitive data values may be passed
as arguments and results of method invocations.

= An object is an instance of a Java class

public class Person implements Serializable {

private String name;

private String place;

private int year;

public Person(String aName, String aPlace, inf aYear) {
name = aName;
place = aPlace;
year = aYear;

}

// followed by methods for accessing the instance variables

Ex : Java Serialized Form

Serialized values Explanation
Person 8-byte version number hO class name, version number
3 int year java.lang.String java.lang.String number, type and name of
name place instance variables
1984 S Smith 6 London hl values of instance variables

As an example, consider the serialization of the following object:

Person p = new Person("Smith", "London", 1984);

c. Extensible Markup Language (XML}

= XML is a markup language that was defined by the World Wide Web
Consortium (W3C) for general use on the Web.

= Both XML and HIML were derived from SGML (Standardized
Generalized Markup Language) [ISO 8879]

= XML data items are tagged with ‘markup’ strings.
<person 1d="123456789">
<name>Smith</name>
<place>London</place>
<year>1984</year>
<!-- a comment -->
</person >

3. Multicast Communication

= A multicast operation is more appropriate — this is an operation that
sends a single message from one process 1o each of the members
of a group of processes, usually in such a way that the membership
of the group is fransparent o the sender.

= Multicast messages characteristics:

I} Fault tolerance based on replicated services: a group of
servers

2] Discovering services in spontaneous networking: to locate
available services

3) Befter performance through replicated data: managing the
replicas

4] Propagation of event notificafions: be used to notify processes

A. I[P Multicast

Address Assignment
224.0.0.0 Base address (reserved)
224.0.0.1 All systems (hosts or routers) on this network
224.0.0.2 All routers on this network
= [P multicast is built on 'I'Op of 224.0.0.4 DMVRP routers
the Internet Protocol (IP). 224.0.05 OSPF routers

224.0.0.7 ST (stream) routers

= A multicast group is specified [53503 ST (stream) hosts

by @ C|CISS D Internet Clddl’eSS 224.0.09 RIP2 routers

(the range 224.0.0.0 to [2240010 IGRP routers

239255255255) 224.0.0.11 Mobile Agents
224.0.0.12 DHCP servers
224.0.0.13 PIM routers
224.0.0.14 RSVP encapsulation
224.0.0.15 CBT routers

224.0.0.22 IGMPv3

o. Reliablility and Ordering

= Some applications require a multicast protocol that is more reliable
than IP multicast.

= There is a need for reliable mulficast, in which any message
transmitted is either received by all members of a group or by none
of them.

= The examples also suggest that some applications have sirong
requirements for ordering, the strictest of which is called totally
ordered multicast.

4. Network Virtualization

= Network virtualization is concerned with the construction of many
different virtual networks over an existing network such as the
Internet.

= Each virtual network can be designed to support a particular
distributed application.

= Each virtual network has its own parficular addressing scheme,
protocols and routing algorithms, but redefined to meet the needs
of particular application classes.

Types of Overlay

Tailored for
application needs

Tailored for
network style

Tvpe

Descripiion

Distmbuted hash tables One of the most prominent classes of overlay

Peer-to-peer file
sharing

Content distribution

networks

Wireless ad hoc
networks

Disnuption-tolerant
networks

network, offering a service that manages a
mapping from keys to values across a potentially
large mumber of nodes in a completely
decentralized manner (similar to a standard hash
table but in a networked environment).

Owerlay structures that focus on constructing
tatlored addressing and routing mechanisms to
support the cooperative discovery and use (for
example, download) of files.

Owverlays that subsume a range of replicabion,
cachmg and placement strategies to provide
improved performance i ferms of content
delivery to web users; used for web acceleration
and to offer the required real-time performance
for video streaming [www. kontiki.com].

Network overlays that provide customized
routing protocols for wireless ad hoc networks,
including proactive schemes that effectively
construct a routing topology on top of the
underlying nodes and reactive schemes that
establish routes on demand typically supported
by flooding.

Owverlays designed to operate in hostile
environments that suffer significant node or link
failure and potentially high delavs.

Offering additional Multicast
features

Resilience

Secunty

One of the carlicst uses of overlay networks in
the Intemet, providing access to multicast serv-
ices where multicast routers are not avalable:
builds on the work by Van Jacobsen, Decring
and Casner with their implementation of the
MBone (or Multicast Backbone) [mbong].

Overlay networks that seck an order of
magnitude improvement in robustness and
availability of Internet paths
[nms.csail mit edu].

Overlay networks that offer enhanced secunity
over the underling IP network, including virtual
private networks, for example, as discussed in
Section 3.4 8.

Skype Overlay Architecture

References

[COU'12]
[FOR'07]
[TAN'0O7]

[PET’12]

Coulouris, G. Dollimore, J., Kindberg, T., Blair, G., DISTRIBUTED SYSTEMS :Concepts
and Design Fifth Edition, Pearson Education, Inc., United States of America, 2012.

Forouzan, B.A., Data Communications and Networking, Fourth Edition, McGraw-
Hill, New York, 2007.

Tanenbaum, A.S., Steen, M.V., DISTRIBUTED SYSTEMS : Principles and Paradigms
Second Edition, Pearson Education, Inc., United States of America, 2007.

Peterson, L.L., and Davie, B.S., Computer Networks: A Systems Approach Fifth
Edition, Morgan Kaufmann, Burlington USA, 2012.

Thank You

Gandeva Bayu Satrya, ST., MT.
Telematics Labz.
Informatics Department
Telkom University
@2014

